Cryptopolitan
2021-09-15 09:48:45

How Is Federated Learning Implemented on Phoenix Global?

To improve GPS navigation, MIT researchers are tagging road features on digital maps through Machine learning. Beyond GPS navigation, Machine learning has seen application in many fields ranging from medicine to financial analysis. Machine learning is constantly evolving because it is a science to educate computers to act like humans in real-life situations. The role of the Internet of Things in a revolutionary society cannot be ignored. The Internet of Things can use advanced machine learning (ML) algorithms for its applications. However, because a large amount of data is stored on a central cloud server, using centralized machine learning algorithms is not a viable option due to huge computational costs and privacy leak issues.  In this case, blockchain can improve the privacy of IoT networks, allowing them to decentralize without any central authority. However, it remains a challenging task to use sensitive and massive data stored in a distributed manner for application purposes. To overcome this difficult task, Federated Learning (FL) is a new type of ML. This most promising solution can bring learning to end devices without sharing private data with a central server. In simple terms, Federated Learning allows companies to share data in a “closed-loop system.”  Federated Learning (or Collaborative Learning) As a fully decentralized machine learning technique, Federated Learning is a step up from the ...

Crypto 뉴스 레터 받기
면책 조항 읽기 : 본 웹 사이트, 하이퍼 링크 사이트, 관련 응용 프로그램, 포럼, 블로그, 소셜 미디어 계정 및 기타 플랫폼 (이하 "사이트")에 제공된 모든 콘텐츠는 제 3 자 출처에서 구입 한 일반적인 정보 용입니다. 우리는 정확성과 업데이트 성을 포함하여 우리의 콘텐츠와 관련하여 어떠한 종류의 보증도하지 않습니다. 우리가 제공하는 컨텐츠의 어떤 부분도 금융 조언, 법률 자문 또는 기타 용도에 대한 귀하의 특정 신뢰를위한 다른 형태의 조언을 구성하지 않습니다. 당사 콘텐츠의 사용 또는 의존은 전적으로 귀하의 책임과 재량에 달려 있습니다. 당신은 그들에게 의존하기 전에 우리 자신의 연구를 수행하고, 검토하고, 분석하고, 검증해야합니다. 거래는 큰 손실로 이어질 수있는 매우 위험한 활동이므로 결정을 내리기 전에 재무 고문에게 문의하십시오. 본 사이트의 어떠한 콘텐츠도 모집 또는 제공을 목적으로하지 않습니다.