Cryptopolitan
2021-09-15 09:48:45

How Is Federated Learning Implemented on Phoenix Global?

To improve GPS navigation, MIT researchers are tagging road features on digital maps through Machine learning. Beyond GPS navigation, Machine learning has seen application in many fields ranging from medicine to financial analysis. Machine learning is constantly evolving because it is a science to educate computers to act like humans in real-life situations. The role of the Internet of Things in a revolutionary society cannot be ignored. The Internet of Things can use advanced machine learning (ML) algorithms for its applications. However, because a large amount of data is stored on a central cloud server, using centralized machine learning algorithms is not a viable option due to huge computational costs and privacy leak issues.  In this case, blockchain can improve the privacy of IoT networks, allowing them to decentralize without any central authority. However, it remains a challenging task to use sensitive and massive data stored in a distributed manner for application purposes. To overcome this difficult task, Federated Learning (FL) is a new type of ML. This most promising solution can bring learning to end devices without sharing private data with a central server. In simple terms, Federated Learning allows companies to share data in a “closed-loop system.”  Federated Learning (or Collaborative Learning) As a fully decentralized machine learning technique, Federated Learning is a step up from the ...

Hankige Crypto uudiskiri
Loe lahtiütlusest : Kogu meie veebisaidi, hüperlingitud saitide, seotud rakenduste, foorumite, ajaveebide, sotsiaalmeediakontode ja muude platvormide ("Sait") siin esitatud sisu on mõeldud ainult teie üldiseks teabeks, mis on hangitud kolmandate isikute allikatest. Me ei anna meie sisu osas mingeid garantiisid, sealhulgas täpsust ja ajakohastust, kuid mitte ainult. Ükski meie poolt pakutava sisu osa ei kujuta endast finantsnõustamist, õigusnõustamist ega muud nõustamist, mis on mõeldud teie konkreetseks toetumiseks mis tahes eesmärgil. Mis tahes kasutamine või sõltuvus meie sisust on ainuüksi omal vastutusel ja omal äranägemisel. Enne nende kasutamist peate oma teadustööd läbi viima, analüüsima ja kontrollima oma sisu. Kauplemine on väga riskantne tegevus, mis võib põhjustada suuri kahjusid, palun konsulteerige enne oma otsuse langetamist oma finantsnõustajaga. Meie saidi sisu ei tohi olla pakkumine ega pakkumine